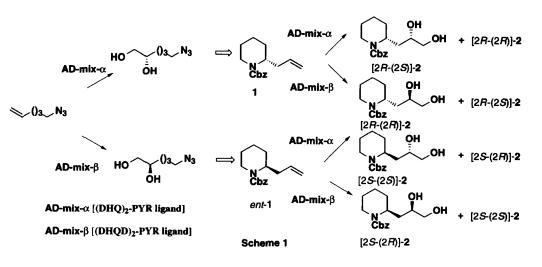


PII: S0040-4039(97)00643-6

A General Entry to 2-(2-Hydroxyalkyl)piperidines *via* Iterative Asymmetric Dihydroxylation to Cause Enantiomeric Enhancement¹

Hiroki Takahata,* Minoru Kubota, and Takefumi Momose*


Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

Abstract: Both enantiomers of 2-(2-propenyl)piperidine (1) (76-88% ee), prepared via the first AD of 5hexenyl azide, underwent the second AD to provide all of the four stereoisomeric 2-(2-hydroxypropyl)piperidines (2) with enantiomeric enhancement (>98% ee). An asymmetric synthesis, starting from 2, of several 2-(2-hydroxyalkyl)piperidine alkaloids are demonstrated. © 1997 Elsevier Science Ltd.

Biologically active alkaloids of the substituted piperidine ring system have been the target of considerable synthetic efforts.² During our continuing studies on asymmetric synthesis of piperidine alkaloids,³ we recently achieved a new asymmetric synthesis of both enantiomers of 2-(2-propenyl)piperidine (1) *via* the Sharpless asymmetric dihydroxylation (AD) of 5-hexenyl azide, the design leading to 2-substituted piperidine and related alkaloids.⁴ However, the precedented AD established by the Sharpless group suggested that enantiomeric excess (ee) in the case of terminal olefins might be modest except for arylvinyls such as styrene.⁵ In practice, the ee of 1 was of level of 76%-88%.⁴ We now describe our findings that additional AD of 1 afforded all of the four isomers of 2-(2,3-dihydoxypropyl)piperidine (2) with enantiomeric enhancement, and demonstrate the synthetic utility of 2 by an expeditious asymmetric synthesis of the 2-(2-hydroxyalkyl)piperidine alkaloids (-)-halosaline, (+)-*N*-methylallosedridine, (+)-8-ethylnorlobelol, (+)-sedridine, (+)-allosedridine, (-)-allosedridine, and (+)-*N*-methylsedridine in short steps.

We anticipate that repeated AD for the terminal olefins might improve the stereoselectivity (ee) based on the following consideration: The first AD (AD-mix- α) reaction produces the major (S) and minor (R) enantiomers. After the introduction of the terminal olefin followed by the second AD (AD-mix- α), four products result; (S,S), (S,R), (R,S), and (R,R) isomers. The relationship between the desired (S,S)-isomer and the undesired (S,R)- and (R,S)-isomers is diastereomeric. Very little of the mirror image (R,R)-isomer is formed, and therefore the enantiomeric purity of the desired (S,S)-isomer will be high. On the other hand, the diastereomer of a mixture of (S,R)- and (R,S)-isomers could show low ee.⁶

An asymmetric synthesis of 2-(2-propenyl)piperidines 1 and *ent-1 via* the first AD (PYR ligand) reaction of 5-hexenyl azide has been performed by us.⁴ On the basis of the above principle, the second AD [(DHQ)₂-PYR ligand]⁷ reaction of the terminal olefin in 1 was carried out to afford a readily separable mixture of the major diastereomer [2*R*-(2*S*)]-2 (> 98 % ee) and the minor diastereomer [2*R*-(2*R*)]-2 (54 % ee). These results containing other three examples are shown in Table 1.⁸ Since the enantioselectivities of all the four major diastereomers 2 were found to be more than 98% ee, the enantiomeric enhancement by repeated AD was exemplified.

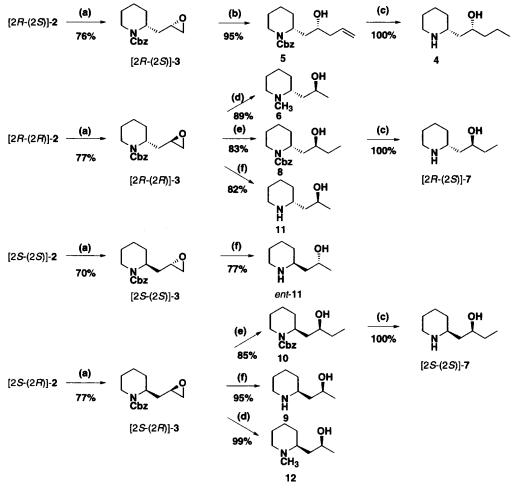


Table 1 The AD reaction of both enantiomers of 1.					
Substrate 1	Ligand	major compd. 2	Yield (ee)	minor compd. 2	Yield (ee)
1	(DHQ)2-PYR	[2 <i>R</i> -(2 <i>S</i>)]-2	70% (>98%)	[2R-(2R)]-2	21% (54%)
1	(DHQD)2-PYR	[2 <i>R</i> -(2 <i>R</i>)]-2	69% (>98%)	[2R-(2S)]-2	22% (54%)
ent-1	(DHQ)2-PYR	[2 <i>S</i> -(2 <i>S</i>)]- 2	70% (>98%)	[2S-(2R)]-2	22% (72%)
ent-1	(DHQD)2-PYR	[2S-(2R)]- 2	74% (>98%)	[2 <i>S</i> -(2 <i>S</i>)]-2	14% (47%)

With all the four homochiral 2-(2,3-dihydroxypropy) piperidines 2 in hand, we focused our attention on their transformation into biologically active 2-(2-hydroxyalkyl)piperidine alkaloids. Our synthesis began with the epoxidation of 2. The four diols 2 were converted into the four epoxides 3 by the Sharpless's one-pot procedure (1: CH3C(OCH3)3/PPTS; 2: CH3COBr; 3: K2CO3)⁹ in good yields. Having obtained these results, the first asymmetric synthesis of (-)-halosarine (4),¹⁰ isolated from Haloxylon salicornicum, was undertaken. The regioselective cleavage of the epoxide ring in [2R-(2S)]-3 with vinymagnesium bromide in the combination with a cuprous bromide-dimethylsulfide complex was performed to yield the alcohol 5 in 95 % yield. Exposure of 5 to an atmosphere of hydrogen in the presence of Pd(OH)2 as a catalyst in MeOH caused simultaneous reduction of its double bond and debenzyloxycarbonylation to give the desired (-)- 4^{11} {[α]_D -19.0° (EtOH), lit. ^{10b} -19.5° (EtOH)} in quantitative vield.

Two [2R-(2S)]-2-(2-hydroxyalkyl)piperidines, (+)-N-methylallosedridine (6), 12 isolated from Sedumsarmentosum, and (+)-8-ethylnorlobelol-I (7),¹³ produced by Loberia inflata, are found. So far, an asymmetric synthesis of these alkaloids, to our knowledge, has not been reported. We began with the synthesis Reduction of the epoxide [2R-(2R)]-3 with LiAlH4 gave 6 { $[\alpha]_D$ +78° (EtOH), lit.^{12b} +67° (96%) of **6**. EtOH)}as a single product in 89 % yield. Its spectral data were identical with those reported.¹⁴ Treatment of [2R-(2R)]-3 with lithium dimethylcuprate underwent the cleavage of the epoxide ring to provide the alcohol 8, which was converted into [2R-(2S)]-7 {mp 53-4 °C; $[\alpha]_D$ +10.2° (EtOH)} by hydrogenolysis in 82 % overall yield. Surprisingly, both its melting point and specific rotation were obviously different from the reported values {mp 87 °C; $[\alpha]^{22}$ +22.3° (EtOH)}.¹³ We considered the absolute configuration of natural (+)-8ethylnorlobelol-I could be 2S-(2S) on the basis of the following speculation. Since halosarine (4) of [2R-

(2*R*)]-configuration appears levorotatory, both of [2R-(2R)]-7 and [2S-(2R)]-7 will be levorotatory. Accordingly, only [2S-(2S)] remains among three possible configurations. In fact, it is known that sedridine (9) of a [2S-2(S)]-configuration is dextrorotatory.¹⁵ In practice, [2S-2(S)]-7¹¹ was synthesized from the epoxide [2S-2(R)]-3 by the analogous procedure described for [2R-(2S)]-7. Both of the melting point (mp 88-89 °C) and the specific rotation { $[\alpha]_D$ +25.8° (EtOH)} are almost identical with those reported (vide supra).¹³ It is thus concluded that the absolute configuration of natural (+)-8-ethylnorlobelol-I is 2S-(2S).¹⁶

Next, an asymmetric synthesis of [2S-(2S)]-2-(2-hydroxypropyl)piperidine, (+)-sedridine (9), 15a isolated from*Sedum acre*, was performed. Super-Hydride®-induced reduction of <math>[2S-2(R)]-3 resulted in only ring-cleavage to yield the alcohol, which was hydrogenated to give 9 { $[\alpha]_D$ +28.4° (EtOH), lit.15b +28.5° (EtOH)} in 95% yield. Its spectral data were in agreement with those reported.15 In a similar fashion, the synthesis of both enantiomers (11 and *ent*-11)¹¹ of allosedridine, 17,18 isolated from *Sedum nudum*, was achieved from [2R-(2R)]- and [2S-(2S)]-3, respectively, using a two-step sequence. Finally, N-

methylsedridine (12), 11, 14, 18 isolated from Sedum polytrichoides, was synthesized by reduction of [2S-2(R)]-3 with LiAlH4 in 99% yield. Its spectral data were consistent with those reported.¹⁴

In summary, we developed a general access to synthetically useful homochiral 2-(2,3dihydroxypropyl)piperidines (2) starting from an achiral 5-hexenyl azide. The two stereogenic centers of 2 were constructed with highly enantiomeric enhancement in a sequence of two AD reactions. In practice, we demonstrated the synthetic utility of 2 as chiral synthons by the first asymmetric synthesis of several 2-(2hydroxyalkyl)piperidine alkaloids except for 9. Extension of this methodology (the enantiomeric enhancement via the twofold or more AD reactions) toward asymmetric synthesis of other biologically active compounds is under investigation.

References and Notes

- Presented at the 20th IUPAC Symposium on the Chemistry of Natural Products. 1996, 9, Chicago. 1.
- 2. Elbein, A. D.; Molyneux, R. In Alkaloids; Chemical and Biological perspectives; Pelletier, S. W., Ed.; John Wiley and Sons: New York, 1987; Vol. 57, p 1.
- a) Takahata, H.; Bandoh, H.; Hanayama, M.; Momose, T. Tetrahedron: Asymmetry 1992, 3, 607; b) 3. Takahata, H.; Inose, K.; Momose, T. Heterocycles 1994, 38, 269.
- 4. Takahata, H.; Kubota, M.; Takahashi, S.; Momose, T. Tetrahedron: Asymmetry 1996, 7, 3047.
- For an excellent review, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 5. 1994, 94, 2483.
- 6. a) On the basis of similar consideration, the highly enantiomeric C2-symmetric tetraols together with meso-tetraol have been obtained by the AD reaction of 1,6-heptadiene. Takahata, H.; Kouno S.; Momose, T. Tetrahedron: Asymmetry 1995, 6, 1085; b) cf. Schreiber, S. L.; Schreiber, T. S.; Smith, D. B. J. Am. Chem. Soc. 1987, 109, 1525.
- Crispino, G. A.; Jeong, K.-S.; Kolb, H. C.; Wang, Z.-M.; Xu, D.; Sharpless, K. B. J. Org. Chem. 7. 1993, 58, 3785.
- 8. Ees of the diols 2 were determined by HPLC using DAICEL CHIRALPAC AS: (40 °C, hexane-npropanol = 9:1; flow 0.4 mL/min).
- Kolb, H. C.; Sharpless, K. B. Tetrahedron 1992, 48, 10515. 9
- 10. a) Micel, K.-H.; Sandberg, F.; Haglid, F.; Norin, T. Acta Pharm. Suec. 1967, 4, 97; b) Micel, K.-H.; Sandberg, F.; Haglid, F.; Norin, T.; Chan, R. P. K.; Craig, J. C. Acta Chem. Scand. 1969, 23, 3479.
- **4**; mp 83 °C; ¹H NMR (300 MHz, CDCl₃) δ 0.91 (3 H, t, J = 6.9 Hz), 1.26-1.59 (12 H, m), 1.78-1.80 11. (1 H, m), 2.55 (1 H, td, J = 11.5, 2.75 Hz), 2.81-2.88 (1 H, m), 3.00-3.05 (1 H, m), 3.84-3.90 (1 H, m)m); ¹³C NMR (75 MHz, CDCl3) δ 14.32, 19.17, 24.87, 26.23, 31.67, 40.18, 42.21, 47.01, 54.84, 68.87; [2S-(2S)]-7; ¹H NMR (300 MHz, CDCl₃) δ 0.91 (3 H, t, J = 7.4 Hz), 1.30-1.61 (9 H, m), 1.79-1.81 (1 H, m), 2.55 (1 H, td, J = 9.1, 2.8 Hz), 2.83-3.05 (4 H, m, 3.75-3.82 (1 H, m); ¹³C NMR (75 MHz, CDCl₃) δ 10.38, 24.95, 26.30, 30.76, 31.58, 41.70, 47.14, 54.98, 70.69; **11**; mp 61 °C, lit.^{17a} 62-3 °C; [a]_D +17.1° (c 1.55, MeOH), lit.^{17a} [a]_D +16.2° (c 4.01, MeOH); ¹H NMR (500 MHz, CDCl₃) δ 1.03-1.12 (1 H, m), 1.11 (3 H, d, J = 6.0 Hz), 1.21-1.31 (2 H, m), 1.41-1.52 (2 H, m), 1.56-1.62 (2 H, m), 1.77-1.80 (1 H, m), 2.56 (1 H, td, J = 13.9, 3.0 Hz), 2.69 (1 H, t, J = 10.7Hz), 3.02 (1 H, d, J = 13.7 Hz), 3.50 (2 H, br s), 3.98 (1 H, dqd, J = 10.3, 6.2, 2.1 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 23.99, 24.56, 27.33, 34.33, 44.38, 46.09, 58.29, 69.16; *ent*-11; [α]_D -16.2° (c 1.55, MeOH); 12; $[\alpha]_D$ -32.99° (c 0.675, EtOH), lit.^{12b} $[\alpha]_D$ -31° (c 1.05, EtOH).
- a) Marion, L.; Chaput, M. Can, J. Research 1949, 27, 215; b) Beyerman, H. C.; Bordes, B. S. L.; Maat, L.; Warnaar, F. M. Recl. Trav. Chim. Pays-Bas 1972, 91, 1441; c) Kim, J. H.; 'T Hart, H.; 12. Stevens, J. F. Phytochemistry 1996, 41, 1319.
- 13.
- 14.
- Schöpf, C.; Kauffmann, T. Justus Liebigs Ann. Chem. 1957, 608, 88. Schneider, M. J.; Brendze, S.; Montali, J. A. Phytochemistry 1995, 39, 1387 a) Beyerman, H. C.; Maat, L.; Van Veen, A.; Zweistra, A.; von Philipsborn, W. Rec. Trav. Chim. 1965, 84, 1367; b)Murahashi, S. Imada, Y.; Kohno, M.; Kawakami, T. Synlett1993, 395; c) 15. Louis, C.; Hootelé, C. Tetrahedron: Asymmetry 1997, 8, 109; d) Littler, B. J.; Gallagher, T.; Boddy, I. K.; Riordan, P. Synlett1997, 22.
- 16. Very recently, the same correction of the absolute configuration of (+)-8-ethylnorlobelol-I was proposed. Mill, S.; Durant, A.; Hootelé, C. Liebigs Ann. 1996, 2083.
- a) Schöpf, C.; Gams, E.; Koppernock, F.; Rausch, R. Wallbe, R. Liebigs Ann. Chem. 1970, 732, 17. 181; b) Stevens, J. F.; 'T Hart, H.; Hendriks, H.; Malingré, T. M. Phytochemistry **1992**, 31, 3917. The absolute configurations of both allosedridine (11) and N-methylsedridine (12) remain unknown.
- 18.

(Received in Japan 13 March 1997; revised 2 April 1997; accepted 4 April 1997)